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Abstract. In the present paper we present results of calculations obtained with the use of the theoretical
method described in our preceding paper [Eur. Phys. J. D, DOI: 10.1140/epjd/e2007-00328-9] and perform
detail analysis of α-helix↔random coil transition in alanine polypeptides of different length. We have
calculated the potential energy surfaces of polypeptides with respect to their twisting degrees of freedom
and construct a parameter–free partition function of the polypeptide using the suggested method [Eur.
Phys. J. D, DOI: 10.1140/epjd/e2007-00328-9]. From the build up partition function we derive various
thermodynamical characteristics for alanine polypeptides of different length as a function of temperature.
Thus, we analyze the temperature dependence of the heat capacity, latent heat and helicity for alanine
polypeptides consisting of 21, 30, 40, 50 and 100 amino acids. Alternatively, we have obtained same
thermodynamical characteristics from the use of molecular dynamics simulations and compared them with
the results of the new statistical mechanics approach. The comparison proves the validity of the statistical
mechanic approach and establishes its accuracy.

PACS. 82.60.Fa Heat capacities and heats of phase transitions – 87.15.He Dynamics and conformational
changes – 64.70.Nd Structural transitions in nanoscale materials – 64.60.-i General studies of phase
transitions

1 Introduction

In our preceding paper [1], we introduced a novel and
general theoretical method for the description of phase
transitions in finite complex molecular systems. In partic-
ular, we have demonstrated that for polypeptide chains,
i.e. chains of amino acids, one can identify specific twist-
ing degrees of freedom that are responsible for the folding
dynamics of these amino acid chains. In other words, these
degrees of freedom characterize the transition from a chain
in a random coil state, to one in an α-helix structure and
vice versa.

The essential domains of the potential energy surface
(PES) of polypeptides with respect to these twisting de-
grees of freedom have been calculated and thoroughly an-
alyzed on the basis of both classical molecular dynamics
(MD) simulations, and ab initio methods such as density
functional theory (DFT) and the Hartree-Fock approach.
In references [1–3], it was shown that with the PES, one
can construct a partition function of a polypeptide chain
from which it is then possible to extract all essential ther-
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modynamical variables and properties, such as the heat
capacity, phase transition temperature, free energy, etc.

In this paper, we explore this further using a formalism
we introduced previously [1] and apply it to a detailed
analysis of the α-helix↔random coil phase transition in
alanine polypeptides of different lengths. We have chosen
this system because it has been widely investigated both
theoretically [4–20] and experimentally [21–24] during the
last five decades (for review see, e.g. [25–28]) and thus is
perfect system for testing a novel theoretical approach.

The theoretical studies of the helix-coil transition in
polypeptides have been performed both with the use of
statistical mechanics methods [4–9,16–20,27] and of MD
[12–16]. Previous attempts to describe the helix-coil tran-
sition in polypeptide chains using the principles of of sta-
tistical mechanics were based on the models suggested
in sixties [4–7]. These models were based on the con-
struction of the polypeptide partition function depend-
ing on several parameters and were widely used in ref-
erences [16–20,25–27] for the description of the helix-coil
transition in polypeptides.

For a comprehensive overview of the relevant work we
refer to recent reviews [25,27,28] and the book [26], as
well as to our preceding paper [1].

Experimentally, extensive studies of the helix-coil
transition in polypeptides have been conducted [21–24].
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In reference [21], the enthalpy change of an α-helix to
random coil transition for the Ac-Y(AEAAKA)8F-NH2

peptide in water was determined calorimetrically. The
dependence of the heat capacity of the polypeptide on
temperature was measured using differential scanning
calorimetry. In references [22,23], UV resonance Ra-
man spectroscopy was performed on the MABA-[A]5-
[AAARA]3-ANH2 peptide. Using circular dichroism meth-
ods, the dependence of helicity on temperature was mea-
sured. While in reference [24], the kinetics of the helix-coil
transition of the 21-residue alanine polypeptide was inves-
tigated by means of infrared spectroscopy.

In this work, we have calculated the PES of polyala-
nines of different lengths with respect to their twisting
degrees of freedom. This was done within the frame-
work of classical molecular mechanics. However, to scru-
tinize the accuracy of these calculations, we compared
the resultant molecular mechanics potential energy land-
scapes with those obtained using ab initio density func-
tional theory (DFT). The comparison was only performed
for alanine tripeptide and hexapeptide, since for larger
polypeptides, the DFT calculation becomes increasingly
computationally demanding. Hence for these larger sys-
tems, only molecular mechanics simulations have been
used in this present work.

The calculated PES was then used to construct a
parameter–free partition function of the polypeptide us-
ing the statistical method we had outlined in our preced-
ing paper [1]. This partition function was then used to
derive various thermodynamical characteristics of alanine
polypeptides as a function of temperature and polypeptide
length. We have calculated and analyzed the temperature
dependence of the heat capacity, latent heat and helicity
of alanine polypeptides consisting of 21, 30, 40, 50 and
100 amino acids. We have also established a correspon-
dence between our ab initio method with the results of
the semiempirical approach of Zimm and Bragg [4]. Thus,
on the basis of our approach, we have determined the key
parameters of the Zimm-Bragg theory that itself utilizes
principles of statistical mechanics.

Finally, we have calculated the heat capacity, latent
heat and helicity of alanine polypeptides using molecular
dynamics and have compared the obtained results with
those using our statistical approach. Comparison between
the two methods allows us to establish the accuracy of our
statistical method for relatively small molecular systems,
and lets us gauge the feasibility of extending the descrip-
tion to larger molecular objects for which it is especially
essential in those cases where MD simulations are hardly
possible due to computational limitations.

Our paper is organized as follows. In Section 2 we
present the final expressions obtained within the formal-
ism described in our preceding paper [1] and introduce ba-
sic equations and the set of parameters which have been
used in MD calculations. In Section 3 we present and dis-
cuss the results of computer simulations obtained with the
use of developed theoretical method and compare then
with results of MD simulations. In Section 4, we draw a
conclusion to this paper.

2 Theoretical methods

2.1 Statistical model for the α-helix↔random coil
phase transition

Our calculations have been performed using the statistical
formalism we described previously [1]. Here, we will only
outline the basic ideas of this method and present the final
expressions that were used in our investigation.

Let us consider a polypeptide, consisting of n amino
acids. The polypeptide can be found in one of its numer-
ous isomeric states with different energies. A group of iso-
meric states with similar characteristic physical properties
is called a phase state of the polypeptide. Thus, a regu-
lar bounded α-helix state corresponds to one phase state
of the polypeptide, while all possible unbounded random
conformations can be denoted as the random coil phase
state.

The phase transition is then a transformation of the
polypeptide from one phase state to another, i.e. the tran-
sition from a regular α-helix to a random coil conforma-
tion.

All thermodynamical properties of a molecular system
are described by its partition function. The partition func-
tion of a polypeptide can be expressed as [1]:

Z = AB(kT )(kT )3N−3− ls
2

[
βZn−1

b Zu

+β
n−2∑
i=4

(n− i)ZibZ
n−i
u + Znu
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βi
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×Zk+3i
b Zn−k−3i

u

]
. (1)

Here the first and the third terms in the square brack-
ets describe, respectively, the partition function of the
polypeptide in the α-helix and the random coil phases.
The second term in the square brackets accounts for the
situation of phase co-existence. The summation in this
term is performed from i = 4 as the shortest α-helix has
only 4 amino acids. The final term in the square brack-
ets accounts for the polypeptide conformations in which
a number of amino acids in the α-helix conformation are
separated by amino acids in the random coil conforma-
tion. The first summation in this term goes over the sepa-
rated helical fragments of the polypeptide, while the sec-
ond summation goes over individual amino acids in the
corresponding fragment. Polypeptide conformations with
two or more helical fragments are energetically unfavor-
able. This fact will be discussed in detail further on in this
paper. Therefore, the fourth term in the square brackets
equation (1) can be omitted in the construction of the
partition function.

A in equation (1) is a factor that is determined by
the specific volume, momenta of inertia and frequencies
of normal vibration modes of the polypeptide in differ-
ent conformations [1], ls is the total number of the “soft”
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Fig. 1. (Color online) Dihedral angles ϕ and ψ used for char-
acterization of the secondary structure of a polypeptide chain.

degrees of freedom in the system. B(kT ) is a function
defined in our preceding paper [1], which describes the ro-
tation of the side radicals in the polypeptide. Zb and Zu
are the contributions to the partition function from a sin-
gle amino acid being in the bounded or unbounded states
respectively. They can be written as:

Zb =
∫ π

−π

∫ π

−π
exp

(
− ε

(b)(ϕ, ψ)
kT

)
dϕdψ (2)

Zu =
∫ π

−π

∫ π

−π
exp

(
− ε

(u)(ϕ, ψ)
kT

)
dϕdψ, (3)

where k and T are the Boltzmann constant and the tem-
perature respectively, while N is the total number of
atoms in the system. ε(b)(ϕ, ψ) and ε(u)(ϕ, ψ) in equa-
tions (2) and (3) are the potential energies of a single
amino acid in the bounded and unbounded conformations
calculated respectively versus the twisting degrees of free-
dom ϕ and ψ. These degrees of freedom are defined for
each amino acid of the polypeptide except for the bound-
ary ones and are described by two dihedral angels ϕi and
ψi (see Fig. 1). β in equation (1) is the helix initiation
factor, which is defined as:

β = exp
(
−3EHB

kT

)
, (4)

where EHB is the energy of a single hydrogen bond.
Both angles, ϕ and ψ, are defined by four neighboring

atoms in the polypeptide chain. The angle ϕi is defined as
the dihedral angle between the planes formed by the atoms
(C

′
i−1−Ni−Cαi ) and (Ni−Cαi −C

′
i). While the angle ψi is

defined as the dihedral angle between the (Ni − Cαi − C
′
i)

and (Cαi −C
′
i−Ni+1) planes. The atoms are numbered from

the NH2– terminal of the polypeptide and ϕi and ψi take
all possible values within the interval [−180◦;180◦]. For an
unambiguous definition most commonly used [29–33], ϕi
and ψi are counted clockwise if one looks on the molecule
from its NH2– terminal (see Fig. 1).

By substituting equations (2) and (3) into equa-
tion (1), one obtains the final expression for the
partition function of a polypeptide experiencing an
α-helix↔random coil phase transition. This is the

expression which we then use to evaluate all thermody-
namical characteristics of our polypeptide system.

2.2 Molecular dynamics

Molecular dynamics (MD) is an alternative approach
which can be used for the study of phase transitions in
macromolecular systems. Within the framework of MD,
one tries to solve the equations of motion for all particles
in the system interacting via a given potential. Since the
technique of MD is well-known and described in numerous
textbooks [34–36], we will only present the basic equations
and ideas underlying this method.

MD simulations usually imply the numerical solution
of the Langevin equation [36–38]:

miai = mir̈i = −∂U(R)
∂ri

− βivi + η(t). (5)

Here mi, ri, vi and ai are the mass, radius vector, veloc-
ity and acceleration of the atom i. U(R) is the potential
energy of the system. The second term describes the vis-
cous force which is proportional to the particle velocity.
The proportionality constant βi = miγ, where γ is the
damping coefficient. The third term is the noise term that
represents the effect of a continuous series of collisions of
the molecule with the atoms in the medium. To study the
time-evaluation of the system, the Langevin equations of
motion, equation (5), are integrated for each particle.

In this paper, we use the MD approach to study the
α-helix↔random coil phase transition in alanine polypep-
tides and compare the results with those obtained using
the statistical mechanics approach. For the simulations,
we use the CHARMM27 force field [39] to describe the
interactions between atoms. This is a common empirical
field for treating polypeptides, proteins and lipids [39–43].

MD simulations allow one to study the
α-helix↔random coil phase transition of alanine polypep-
tide as this process occurs on the nanosecond time
scale. From these simulations, one can obtain the im-
portant characteristics of the phase transition, such as
the transition temperature, maximal heat capacity, the
temperature range of the transition and the latent heat.

We perform MD simulations of alanine polypeptides
consisting of 21, 30, 40, 50 and 100 amino acids. For this
study it is necessary to specify the initial conditions for
the system, i.e. to define the initial positions of all atoms
and set their initial velocities. We assume the initial struc-
ture of the polypeptides as an ideal α-helix [26,44,45] and
assign the particle velocities randomly according to the
Maxwell distribution at a given temperature.

The MD simulations of the polypeptides were per-
formed at different temperatures. For an alanine polypep-
tide consisting of 21 amino acids, 71 simulations were
performed for the temperatures in the region of 300 K
to 1000 K. For polypeptides consisting of 30, 40, 50 and
100 amino acids, 31 simulations were performed for each
polypeptide in the temperature region of 300 K to 900 K.
The simulations were carried out within a time interval
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of 100 ns and an integration step of 2 fs. The first 25 ns of
the simulation were used to equilibrate the system, while
the next 75 ns were used for obtaining data about the en-
ergy and structure of the system at a given temperature.

The set of the parameters used in our simulations
can be found in references [34–36]. All simulations were
performed using the NAMD molecular dynamics pro-
gram [35], while visualization of the results was done with
VMD [46]. The covalent bonds involving hydrogen atoms
were considered as rigid. The damping coefficient γ was
set to 5 ps−1. The simulations were performed in the NV T
canonical ensemble using a Langevin thermostat with no
cutoff for electrostatic interactions.

3 Results and discussion

In this section we present the results of calculations ob-
tained using our statistical mechanics approach and those
from our MD simulations. In Section 3.1 we discuss the
accuracy of this force field as applied to alanine polypep-
tides. In Section 3.2 we present the PESs for different
amino acids in alanine polypeptide calculated versus the
twisting degrees of freedom ϕ and ψ (see Fig. 1). In Sec-
tion 3.3, the statistical mechanics approach is used for the
description of the α-helix↔random coil phase transition.
Here, the results of the statistical mechanics approach are
compared to those obtained from MD simulations. In Sec-
tion 3.4 the statistical independence of amino acids in the
polypeptide is discussed.

3.1 Accuracy of the molecular mechanics potential

The PES of alanine polypeptides was calculated using the
CHARMM27 force field [39] that has been parameterized
for the description of proteins, in particular polypeptides,
and lipids. Nevertheless, the level of its accuracy when ap-
plied to alanine polypeptides cannot be taken for granted
and has to be investigated. Therefore, we compare the
PESs for alanine tri- and hexapeptide calculated using
the CHARMM27 force field with those calculated using
ab initio density functional theory (DFT). In the DFT
approach, the PES of alanine tri- and hexapeptides were
calculated as a function of the twisting degrees of free-
dom, ϕ and ψ (see Fig. 1), in the central amino acid of
the polypeptide [32]. All other degrees of freedom were
frozen.

To establish the accuracy of the CHARMM27 force
field, we have calculated the PESs of alanine polypep-
tides in its β-sheet conformation. The geometry of alanine
tri- and hexapeptide used in the calculations are shown
in Figures 2a and 2b respectively. The ab initio calcu-
lations were performed [32] using B3LYP, Becke’s three-
parameter gradient-corrected exchange functional [47]
with the gradient-corrected correlation functional of Lee
et al. [48]. The wave function of all electrons in the sys-
tem was expanded using a standard basis set B3LYP/6-
31G(2d,p). The PESs calculated within the DFT approach
have been analyzed in reference [32].

Fig. 2. (Color online) Optimized geometries of alanine
polypeptide chains: (a) Alanine tripeptide; (b) Alanine
hexapeptide in the β-sheet conformation.

The difference between the PESs calculated with the
CHARMM27 force field and with the B3LYP functional
is shown in Figure 3 for the alanine tripeptide (left plot)
and for the alanine hexapeptide (right plot).

From Figure 3, we can see that the energy difference
between the PESs calculated with the CHARMM27 force
field and with the B3LYP functional is less than 0.15 eV.
To describe the relative deviation of the PESs, we intro-
duce the relative error of the two methods as follows:

η =
2

∫ |EB3L(ϕ, ψ) − ECH27(ϕ, ψ)|dϕdψ∫ |EB3L(ϕ, ψ) + ECH27(ϕ, ψ)|dϕdψ
100%, (6)

where EB3L(ϕ, ψ) and ECH27(ϕ, ψ) are the potential ener-
gies calculated within the DFT and molecular mechanics
methods respectively. Calculating η for alanine tri- and
hexapeptide, one obtains: η3×Ala = 27.6% and η6×Ala =
23.4% respectively. These values show that the molecular
mechanics approach is reasonable for a qualitative descrip-
tion of the alanine polypeptide. Note however, that the
PES obtained for alanine hexapeptide within the molec-
ular mechanics method is closer to the PES calculated
within the DFT approach. This occurs because the PESs
ECH27(ϕ, ψ) and EB3L(ϕ, ψ) of alanine hexapeptide were
calculated for the structure optimized within the DFT ap-
proach, while the PESs ECH27 and EB3L of alanine tripep-
tide were calculated for the structure optimized within the
molecular mechanics method and the DFT approach re-
spectively.

Our analysis shows that the molecular mechanics po-
tential can be used to describe qualitatively the struc-
tural and dynamical properties of alanine polypeptides
with an error of about 20%. In the present paper, we
have calculated the thermodynamical properties of ala-
nine polypeptides with the use of MD method and com-
pared the obtained results with those attained from the
statistical approach. However, ab initio MD calculations
of alanine polypeptides are hardly possible on the time
scales when the α-helix↔random coil phase transition
occurs, even for systems consisting of only 4–5 amino
acids [30–33,49]. Therefore, we have performed MD simu-
lations for alanine polypeptides using molecular mechanics
forcefield. In order to establish the accuracy of the statisti-
cal mechanics approach, the PES used for the construction
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Fig. 3. (Color online) Difference between the PESs calculated with the CHARMM27 force field and with the B3LYP functional
[32] for the alanine tripeptide (left) and the alanine hexapeptide (right). The relative energies are given in eV. The equipotential
lines are shown for the energies –0.10, –0.05, 0, 0.05 and 0.1 eV.

Fig. 4. (Color online) PESs for different amino acids of alanine polypeptide consisting of 21 amino acids calculated as the
function of twisting dihedral angles ϕ and ψ in: (a) second alanine, (b) third alanine, (c) fourth alanine (d) fifth alanine and (e)
tenth alanine. Amino acids are numbered starting from the NH2 terminal of the polypeptide. Energies are given with respect
to the lowest energy minimum of the PES in eV. The equipotential lines are shown for the energies 1.8, 1.6, 1.4, 1.2, 1.0, 0.8,
0.6, 0.4 and 0.2 eV.

of the partition function was also calculated with the same
method.

3.2 Potential energy surface of alanine polypeptide

To construct the partition function equation (1), one
needs to calculate the PES of a single amino acid in the
bounded, ε(b)(ϕ, ψ), and unbounded, ε(u)(ϕ, ψ), confor-
mations versus the twisting degrees of freedom ϕ and ψ
(see Fig. 1). The potential energies of alanine in different

conformations determine the Zb and Zu contributions to
the partition function, defined in equations (2) and (3).

The PES of an alanine depends both on the conforma-
tion of the polypeptide and on the amino acid index in the
chain. The PES for different amino acids of the 21-residue
alanine polypeptide calculated as a function of twisting
dihedral angles ϕ and ψ are shown in Figure 4. These
surfaces were calculated with the use of the CHARMM27
forcefield for a polypeptide in the α-helix conformation.
The PESs (a), (b), (c), (d) and (e) in Figure 4 correspond
to the variation of the twisting angles in the second, third,



232 The European Physical Journal D

Fig. 5. (Color online) Alanine polypeptide in the α-helix con-
formation. Dashed lines show the hydrogen bonds in the sys-
tem. Figure shows that the second alanine forms only one hy-
drogen bond, while the fifth alanine forms two hydrogen bonds
with the neighboring amino acids.

fourth, fifth and tenth amino acids of the polypeptide re-
spectively. Amino acids are numbered starting from the
NH2 terminal of the polypeptide. We do not present the
PES for the amino acids at boundary because the angle ϕ
is not defined for it.

On the PES corresponding to the tenth amino acid in
the polypeptide (see Fig. 4e), one can identify a promi-
nent minimum at ϕ = −81◦ and ψ = −71◦. This min-
imum corresponds to the α-helix conformation of the
corresponding amino acid, and energetically, the most fa-
vorable amino acid configuration. In the α-helix confor-
mation the tenth amino acid is stabilized by two hydrogen
bonds (see Fig. 5). With the change of the twisting angles
ϕ and ψ, these hydrogen bonds become broken and the en-
ergy of the system increases. The tenth alanine can form
hydrogen bonds with the neighboring amino acids only in
the α-helix conformation, because all other amino acids in
the polypeptide are in this particular conformation. This
fact is clearly seen from the corresponding PES Figure 4e,
where all local minima have energies significantly higher
than the energy of the global minima (the energy differ-
ence between the global minimum and a local minimum
with the closest energy is ∆E = 0.736 eV, which is found
at ϕ = 44◦ and ψ = −124◦).

The PES depends on the amino acid index in the
polypeptide. This fact is clearly seen from Figure 4. The
three boundary amino acids in the polypeptide form a sin-
gle hydrogen bond with their neighbors (see Fig. 5) and
therefore are more weakly bounded than the amino acids
inside the polypeptide. The change in the twisting angles
ϕ and ψ in the corresponding amino acids leads to the
breaking of these bonds, hence increasing the energy of
the system. However, the boundary amino acids are more
flexible then those inside the polypeptide chain, and there-
fore their PES is smoother.

Figure 4 shows that the PESs calculated for the fourth,
fifth and the tenth amino acids are very close and have
minor deviations from each other. Therefore, the PESs for
all amino acids in the polypeptide, except the boundary
ones can be considered identical.

Each amino acid inside the polypeptide forms two hy-
drogen bonds. However since these bonds are shared by

two amino acids, there is only effectively one hydrogen
bond per amino acid (see Fig. 5). Therefore, to deter-
mine the potential energy surface of a single amino acid in
the bounded, ε(b)(ϕ, ψ), and unbounded, ε(u)(ϕ, ψ), con-
formations, we use the potential energy surface calculated
for the second amino acid of the alanine polypeptide (see
Fig. 4a), because only this amino acid forms single hydro-
gen bond with its neighbors (see Fig. 5).

The PES of the second amino acid Figure 4a has a
global minima at ϕ = −81◦ and ψ = −66◦, and cor-
responds to the bounded conformation of the alanine.
Therefore the part of the PES in the vicinity of this
minima corresponds to the PES of the bounded state of
the polypeptide, ε(b)(ϕ, ψ). The potential energy of the
bounded state is determined by the energy of the hydrogen
bond, which for an alanine is equal to EHB = 0.142 eV.
This value is obtained from the difference between the en-
ergy of the global minima and the energy of the plateaus
at ϕ ∈ (−90◦... − 100◦) and ψ ∈ (0◦... 60◦) (see Fig. 4a).
Thus, the part of the potential energy surface which has
an energy less then EHB corresponds to the bounded state
of alanine, while the part with energy greater then EHB
corresponds to the unbounded state.

In Figure 6 we present the potential energy surfaces
for alanine in both the bounded (plot a) and unbounded
(plot b) conformations. Both PESs were calculated from
the PES for the second amino acid in the polypeptide,
which is shown in plot (c) of Figure 6.

3.3 α-helix↔random coil phase transition in alanine
polypeptide

3.3.1 Internal energy of alanine polypeptide

Knowing the PES for all amino acids in the polypeptide,
one can construct the partition function of the system us-
ing from equation (1). Plots (a) and (b) in Figure 6 show
the dependence of ε(b)(ϕ, ψ) and ε(u)(ϕ, ψ) on the twisting
angles ϕ and ψ, while ε(b) and ε(u) define the contributions
of the bounded and unbounded states of the polypeptide
to the partition function of the system (see Eqs. (2) and
(3)). The expressions for Zb and Zu are integrated nu-
merically and the partition function of the polypeptide is
evaluated according to equation (1). The partition func-
tion defines all essential thermodynamical characteristics
of the system as discussed in reference [1].

The first order phase transition is characterized by an
abrupt change of the internal energy of the system with
respect to its temperature. In the first order phase transi-
tion the system either absorbs or releases a fixed amount
of energy while the heat capacity as a function of temper-
ature has a pronounced peak [26,28,29,50]. We study the
manifestation of these peculiarities for alanine polypeptide
chains of different lengths.

Figure 7 shows the dependencies of the internal energy
on temperature calculated for alanine polypeptides con-
sisting of 21, 30, 40, 50 and 100 amino acids. The thick
solid lines correspond to the results obtained using the
statistical approach, while the dots show the results of
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Fig. 6. (Color online) PESs for alanine in α-helix (plot a)
and random coil conformation (plot b). The potential energy
surface for the second amino acid of the polypeptide is shown
in plot (c) and is used to determine the PESs for alanine in
α-helix and random coil conformations. The part of the PES
shown in plot (c), with energy less thenEHB corresponds to the
α-helix conformation (bounded state) of the alanine, while the
part of the potential energy surface with energy greater then
EHB corresponds to the random coil conformation (unbounded
state). The energies are given in eV. The equipotential lines in
plot (a) are shown for the energies 0.05 and 0.1 and 0.15 eV;
in plot (b) for the energies 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9 eV; in plot (c) for the energies 1.8, 1.6, 1.4, 1.2, 1.0,
0.8, 0.6, 0.4 and 0.2 eV.

MD simulations. From Figure 7 it is seen that the in-
ternal energy of alanine polypeptide rapidly increases in
the vicinity of a certain temperature corresponding to the
temperature of the first order phase transition. The value
of the step-like increase of the internal energy is usually
referred as the the latent heat of the phase transition de-
noted as Q. The latent heat is the energy that the system
absorbs at the phase transition. Figure 7 shows that the
latent heat increases with the growth of the polypeptide
length. This happens because in the α-helix state, long
polypeptides have more hydrogen bonds than short ones
and, for the formation of the random coil state, more en-
ergy is required.

The characteristic temperature region of the abrupt
change in the internal energy (half-wight of the heat ca-
pacity peak) characterizes the temperature range of the
phase transition. We denote this quantity as ∆T . With
the increase of the polypeptide length the dependence
of the internal energy on temperature becomes steeper
and ∆T decreases. Therefore, the phase transition in
longer polypeptides is more pronounced. In the following

Fig. 7. (Color online) Dependencies of the internal energy on
temperature calculated for the alanine polypeptide chains con-
sisting of 21, 30, 40, 50 and 100 amino acids. Thick solid lines
correspond to the results obtained within the framework of the
statistical model. Dots correspond to the results of MD simu-
lations, which are fitted using equation (7). The fitting func-
tions are shown with thin solid lines. The fitting parameters
are compiled in Table 1.

subsection we discuss in detail the dependence of ∆T on
the polypeptide length.

With the molecular dynamics, one can evaluate the de-
pendence of the total energy of the system on temperature,
which is the sum of the potential, kinetic and vibrational
energies. Then the heat capacity can be factorized into
two terms: one, corresponding to the internal dynamics
of the polypeptide and the other, to the potential energy
of the polypeptide conformation. The conformation of the
polypeptide influences only the term related to the po-
tential energy and the term corresponding to the internal
dynamics is assumed to be independent of the polypep-
tides conformation.

This factorization allows one to distinguish from the
total energy the potential energy term corresponding to
the structural changes of the polypeptide. The formalism
of this factorization is discussed in detail in reference [1].
The energy term corresponding to the internal dynamics
of the polypeptide neither influence the phase transition
of the system, nor does it grow linearly with temperature.
The term corresponding to the potential energy of the
polypeptide conformation has a step-like dependence on
temperature that occurs at the temperature of the phase
transition. Since we are interested in the manifestation of
the phase transition we have subtracted the linear term
from the total energy of the system and consider only its
non-linear part. The slope of the linear term was obtained
from the dependencies of the total energy on temperature
in the range of 300–450 K, which is far beyond the phase
transition temperature (see Fig. 7). Note that the depen-
dence shown in Figure 7 corresponds only to the non-linear
potential energy terms.
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Table 1. Parameters used in equation (7) to fit the results of MD simulations.

n E0 (eV) ∆E (eV) γ (K) T0 (K) a (eV/K)
21 11.38 ± 0.23 4.30 ± 0.10 79.37 ± 7.62 670.0 ± 2.0 0.0471 ± 0.0003
30 13.61 ± 0.58 4.70 ± 0.16 37.92 ± 7.31 747.4 ± 3.3 0.0699 ± 0.0008
40 16.80 ± 0.39 6.261 ± 0.083 26.59 ± 2.25 785.7 ± 1.8 0.0939 ± 0.0005
50 19.94 ± 0.79 8.15 ± 0.21 29.36 ± 5.51 786.6 ± 2.9 0.1178 ± 0.0010
100 29.95 ± 0.67 12.58 ± 0.16 10.49 ± 2.00 801.1 ± 1.1 0.2437 ± 0.0009

Table 2. Parameters, characterizing the heat capacity peak in Figure 8 calculated using the statistical approach. Heat capacity
at 300 K, C300, the transition temperature T0, the maximal value of the heat capacity C0, the temperature range of the phase
transition ∆T and the specific heat Q are shown as a function of polypeptide length, n.

n C300 (meV/K) T0 (K) C0 (eV/K) ∆T (K) Q (eV)
21 2.034 770 0.020 134 2.70
30 2.840 805 0.037 96 4.15
40 3.736 815 0.060 86 5.77
50 4.631 825 0.080 66 7.38
100 9.111 835 0.308 35 15.47

The heat capacity of the system is defined as the
derivative of the total energy on temperature. However, as
seen from Figure 7 the MD data is scattered in the vicinity
of a certain expectation line. Therefore, the direct differ-
entiation of the energy obtained within this approach will
lead to non-physical fluctuations of the heat capacity. To
overcome this difficulty we define a fitting function for the
total energy of the polypeptide:

E(T ) = E0 +
∆E

π
arctan

[
T − T0

γ

]
+ aT, (7)

where E0, ∆E, T0, γ and a are the fitting parameters.
The first and the second terms are related to the poten-
tial energy of the polypeptide conformation, while the last
term describes the linear increase of the total energy with
temperature. The fitting function equation (7) was used
for the description of the total energy of polypeptides in
earlier papers [15,51]. The results of fitting are shown in
Figure 7 with the thin solid lines. The corresponding fit-
ting parameters are compiled in Table 1.

Figure 7 shows that the results obtained using the MD
approach are in a reasonable agreement with the results
obtained from the the statistical mechanics formalism.
The fitting parameter ∆E corresponds to the latent heat
of the phase transition, while the temperature width of
the phase transition is related to the parameter γ. With
the increase of the polypeptides length, the temperature
width of the phase transition decreases (see γ in Tab. 1),
while the latent heat increases (see ∆E in Tab. 1). These
features are correctly reproduced in MD and in our sta-
tistical mechanics approach.

Furthermore, MD simulations demonstrate that with
an increase of the polypeptide length, the temperature of
the phase transition shifts towards higher temperatures
(see Fig. 7). The temperature of the phase transition is
described by the fitting parameter T0 in Table 1. Note
also, that the increase of the phase transition tempera-
ture is reproduced correctly within the framework of the
statistical mechanics approach, as seen from Figure 7.

Nonetheless, the results of MD simulations and the
results obtained using the statistical mechanics formal-
ism have several discrepancies. As seen from Figure 7 the
latent heat of the phase transition for Ala100 polypep-
tide obtained within the framework of the statistical ap-
proach is higher than that obtained in MD simulations.
This happens because within the statistical mechanics ap-
proach, the potential energy of the polypeptide is under-
estimated. Indeed, long polypeptides (consisting of more
than 50 amino acids) tend to form short-living hydrogen
bonds in the random coil conformation. These hydrogen
bonds lower the potential energy of the polypeptide in
the random coil conformation. However, the “dynamic”
hydrogen-bonds are neglected in the present formalism of
the partition function construction.

Additionally, the discrepancies between the two meth-
ods arise due to the limited MD simulation time and to
the small number of different temperatures at which the
simulations were performed. Indeed, for alanine polypep-
tide consisting of 100 amino acids 26 simulations were
performed, while only 3–5 simulations correspond to the
phase transition temperature region (see Fig. 7).

3.3.2 Heat capacity of alanine polypeptide

The dependence of the heat capacity on temperature for
alanine polypeptides of different lengths is shown in Fig-
ure 8. The results obtained using the statistical approach
are shown with the thick solid line, while the results of MD
simulations are shown with the thin solid line. Since the
classical heat capacity is constant at low temperatures,
we subtract out this constant value of the for a better
analysis of the phase transition in the system. We denote
the constant contribution to the heat capacity as C300

and calculate it as the heat capacity value at 300 K. The
C300 values for alanine polypeptides of different length are
compiled in the second column of Table 2.
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Fig. 8. (Color online) Dependencies of the heat capacity on
temperature calculated for the alanine polypeptides consisting
of 21, 30, 40, 50 and 100 amino acids. The results obtained us-
ing the statistical approach are shown with the thick solid line,
while the results of MD simulations are shown with the thin
solid line. Dashed lines show the heat capacity as a function
of temperature calculated within the framework of the Zimm-
Bragg theory [4]. C300 denotes the heat capacity at 300 K,
which are compiled in Table 2.

As seen from Figure 8, the heat capacity of the system
as a function of temperature acquires a sharp maximum at
a certain temperature corresponding to the temperature
of the phase transition. The peak in the heat capacity is
characterized by the transition temperature T0, the maxi-
mal value of the heat capacity C0, the temperature range
of the phase transition∆T and the latent heat of the phase
transition Q. These parameters have been extensively dis-
cussed in our preceding paper [1]. Within the framework
of the two-energy level model describing the first order
phase transition, it is shown that:

T0 ∼ ∆E

∆S
= const

C0 ∼ ∆S2 ∼ n2

Q ∼ ∆E ∼ n

∆T ∼ ∆E

∆S2
∼ 1
n
. (8)

Here ∆E and ∆S are the energy and the entropy changes
between the α-helix and the random coil states of the
polypeptide, while n is the number of amino acids in
the polypeptide. Figure 9 shows the dependence of the
α-helix↔random coil phase transition characteristics on
the length of the alanine polypeptide. The maximal heat
capacityC0 and the temperature range of the phase transi-
tion ∆T are plotted against the squared number of amino
acids (n2) and the inverse number of amino acids ( 1

n ) re-
spectively, while the temperature of the phase transition
T0 and the latent heat of the phase transition Q are plot-
ted against the number of amino acids (n). Squares and
triangles represent the phase transition parameters calcu-
lated using the statistical approach and those obtained
from the MD simulations respectively.

Fig. 9. (Color online) Phase transition parameters C0, ∆T , T0

and Q calculated as a function of polypeptide length. Squares
and triangles represent the phase transition parameters calcu-
lated using the statistical approach and those obtained from
the MD simulations respectively.

The results obtained within the framework of the sta-
tistical model are in a good agreement with the results ob-
tained on the basis of MD simulations. However, since the
MD simulations are computationally time demanding it is
difficult to simulate phase transition in large polypeptides.
The difficulties arise due to the large fluctuations which
appear in the system at the phase transition temperature
and to the large time scale of the phase transition process.
The relative error of the phase transition temperature ob-
tained on the basis of MD approach is in the order of 3–5%,
while the relative error of the heat capacity is about 30%
in the vicinity of the phase transition (see Fig. 8).

At present, there are no experiments devoted to
the study of phase transition of alanine polypeptides
in vacuo, but such experiments are feasible and are al-
ready planned1. In reference [19] the temperature of the
α-helix↔random coil phase transition was calculated. De-
pending on the parameter set, the temperature of the tran-
sition ranges from 620 K to 650 K for right-handed α-helix,
and from 730 K to 800 K for a left-handed α-helix.

In our previous work [2] on to the theoretical study
of phase transitions in polypeptide chains, we have in-
troduced the basic ideas of a theoretical method which
we have described in detail in reference [1] and which we
currently apply in this work. It was shown that the PES
calculated as a function of twisting degrees of freedom ϕ
and ψ determines the partition function of the system.
To illustrate our method, we used the PES calculated for
alanine hexapeptide within the framework of the ab initio
density functional theory [2] and obtained the phase tran-
sition temperature equal to 300 K. On the other hand, in
this paper we established that the phase transition tem-
perature of alanine polypeptide in vacuo is 770 K. This is
because in reference [2] the PES was calculated for alanine
from the hexapeptide. The hydrogen bonds which stabilize

1 Helmut Haberland, Private communication.
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the α-helix structure of the hexapeptide are impaired and
therefore the PES of a single alanine is smoother compared
to a long polypeptide where every amino acid forms two
hydrogen bonds. The smoothing of the potential energy
surface results in lowering of the energy barriers and the
phase transition temperature.

Nonetheless, smoothing of the PES of an alanine
should happen in solution, as the effective number of hy-
drogen bonds in the polypeptide decreases. This fact was
demonstrated previously [2], where we compared results of
our calculation with available experimental data on ala-
nine rich peptides in water solution and observed a good
correspondence of the phase transition temperature.

The heat capacity peak is asymmetric. The heat capac-
ity at higher temperatures, beyond the heat capacity peak,
is not zero and forms a plateau (see Fig. 8). The plateau is
formed due to the conformations of the amino acids with
larger energies [2]. At T = 1000 K, the difference in the
heat capacity of the polypeptide is 10.0×10−4, 16.0×10−4,
22.3 × 10−4, 28.3 × 10−4 and 54.7 × 10−4 eV/K for the
Ala21, Ala30, Ala40, Ala50 and Ala100 peptides respec-
tively. The magnitude of the plateau increases with the
growth of the polypeptide length. This happens because
the number of energy levels with high energies rapidly in-
creases for longer polypeptide chains.

3.3.3 Calculation of the Zimm-Bragg parameters

An alternative theoretical approach for the study of
α-helix↔random coil phase transition in polypeptides was
introduced by Zimm and Bragg [4]. It is based on the con-
struction of the partition function of a polypeptide involv-
ing two parameters s and σ, where s describes the con-
tribution of a bounded amino acid relative to that of an
unbounded one, and σ describes the entropy loss caused
by the initiation of the α-helix formation.

The Zimm-Bragg theory [4] is semiempirical because
it is parameter dependent. The theoretical method de-
scribed in our preceding paper [1] and which we use in the
present paper is different as it does not include any pa-
rameters and the construction of the partition function is
based solely on the PES of a polypeptide. Therefore, the
construction of our partition function is free of any param-
eters, and this is what makes it different from the models
suggested previously. Assuming that the polypeptide has a
single helical region, the partition function derived within
the Zimm-Bragg theory, reads as:

Q = 1 + σ

n−4∑
k=1

(n− k − 3)sk, (9)

where n is the number amino acids in the polypeptide,
s and σ are the parameters of the Zimm-Bragg theory.
The partition function, which we use in the present paper
equation (1) can be rewritten in a similar form:

Z =

[
1 + βs(T )3

n−4∑
k=1

(n− k − 3)s(T )k
]
Znu (T ). (10)

Fig. 10. (Color online) Dependence of the parameters of the
Zimm-Bragg theory [4] s (plot a) and σ (plot b) on temper-
ature. Parameter s describes the contribution to the parti-
tion function of a bounded amino acid relative to that of an
unbounded one. The parameter σ describes the entropy loss
caused by the initiation of the α-helix formation. Parameter s
was also calculated in reference [19] using three different force
fields, shown with stars, triangles and squares in plot (a).

Here n is the number of amino acids in the polypeptide
and the function s(T ) is defined as:

s(T ) =

∫ π
−π

∫ π
−π exp

(
− ε(b)(ϕ,ψ)

kT

)
dϕdψ

∫ π
−π

∫ π
−π exp

(
− ε(u)(ϕ,ψ)

kT

)
dϕdψ

, (11)

where ε(b)(ϕ, ψ) and ε(u)(ϕ, ψ) are the potential energies
of a single amino acid in the bounded and unbounded
conformations respectively calculated versus its twisting
degrees of freedom ϕ and ψ. By comparing equations (9)
and (10), one can evaluate the Zimm-Bragg parameter
σ as:

σ(T ) = β(T )s(T )3, (12)

where β(T ) is defined in equation (4).
The dependence of the Zimm-Bragg parameters s and

σ on temperature is shown in Figures 10a and 10b re-
spectively. The function −RT ln(s) grows monotonously
with an increase in temperature, as seen in Figure 10a.
The zero of this function corresponds to the temperature
of the phase transition in an infinitely long polypeptide.
In our calculation it is 840 K (see black line in Fig. 10a).
Parameter σ is shown in the logarithmic scale and has a
maximum at T = 575 K. Note, that this maximum does
not correspond to the temperature of the phase transition.

The parameters of the Zimm-Bragg theory were con-
sidered in earlier papers [16,19,52]. In Figure 10a we
present the dependence of parameter s on temperature
calculated in [19] (see squares, triangles and stars in
Fig. 10b) using a matrix approach described in refer-
ence [6]. The energies of different polypeptide conforma-
tions were calculated using the force field described in
reference [53]. Squares, triangles and stars correspond to
three different force field parameter sets used in refer-
ence [19], which are denoted as sets A, B and C. Figure 10a
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shows that the results of our calculations are closer to the
results obtained using the parameter set C. This figure
also illustrates that the Zimm-Bragg parameter s depends
on the parameter set used. Therefore, the discrepancies
between our calculation and the calculation performed in
reference [19] arise due to the utilization of different force
fields.

The Zimm-Bragg parameter σ was also calculated in
reference [19]. However, it was not systematically stud-
ied for the broad range of temperatures, and therefore
we do not plot it in Figure 10b. In reference [19] the pa-
rameter σ was calculated only for the temperature of the
α-helix↔random coil phase transition ranging from 620 K
to 800 K. In reference [19], it was also demonstrated that
parameter σ is very sensitive to the force field parame-
ters, being in the range 10−9.0–10−3.6. In our calculation
σ = 10−2.6 at 860 K. The dependence of the parameter
σ on the force field parameters was extensively discussed
in reference [19], where it was demonstrated that this pa-
rameter does not have a strong influence on the thermo-
dynamical characteristics of phase transition.

If the parameters s and σ are known, it is possible to
construct the partition function of the polypeptide in the
form suggested by Zimm and Bragg [4], and on its ba-
sis calculate all essential thermodynamic characteristics
of the system. The dependence of the heat capacity cal-
culated within the framework of the Zimm-Bragg theory
is shown in Figure 8 by dashed lines for polypeptides of
different length.

From Figure 8 it is seen that results obtained on the
basis of the Zimm-Bragg theory are in a good agreement
with the results of our statistical approach. The values of
the phase transition temperature and of the maximal heat
capacity in both cases are close. The comparison shows
that the heat capacity obtained within the framework of
the Zimm-Bragg model at temperatures beyond the phase
transition window is slightly lower than the heat capacity
calculated within the framework of our statistical model.

An important difference of the Zimm-Bragg theory
from our theory arises due to the accounting for the states
of the polypeptide with more than one α-helix fragment.
These states are often referred to as multihelical states of
the polypeptide. However, their statistical weight in the
partition function is suppressed. The suppression arises
because of entropy loss in the boundary amino acids of a
helical fragment. The boundary amino acids have weaker
hydrogen bonds than amino acids in the central part of
the α-helix. At the same time the entropy of such amino
acids is smaller than the entropy of an amino acids in the
coil state. These two factors lead to the decrease of the
statistical weight of the multihelical states.

The contribution of the multihelical states to the par-
tition function leads to the broadening of the heat capac-
ity peak while the maximal heat capacity decreases. The
multihelical states become important in longer polypep-
tide chains that consist of more than 100 amino acids. As
seen from Figure 8, the maximal heat capacity obtained
within the framework of the Zimm-Bragg model for Ala100

polypeptide is significantly lower than that obtained using

Fig. 11. (Color online) Dependency of the helicity on tem-
perature obtained using the statistical approach for alanine
polypeptide chains consisting of 21, 30, 40, 50 and 100 amino
acids. The helicity for alanine polypeptide consisting of 21
amino acids obtained within a framework of MD approach is
shown in the inset.

our suggested statistical approach. For alanine polypep-
tide consisting of less than 50 amino acids the multihelical
states of the polypeptide can be neglected as seen from the
comparison performed in Figure 8. Omission of the multi-
helical states significantly simplifies the construction and
evaluation of the partition function.

3.3.4 Helicity of alanine polypeptides

Helicity is an important characteristic of the polypep-
tide which can be measured experimentally [21–24]. It
describes the fraction of amino acids in the polypeptide
that are in the α-helix conformation. With the increase of
temperature the fraction of amino acids being in the α-
helix conformation decreases due to the α-helix↔random
coil phase transition. In our approach, the helicity of a
polypeptide is defined as follows:

fα =
β

∑n
i=4(n− i+ 1)(i− 1)Zi−1

b Zn−i+1
u

nZ
, (13)

where n is the number of amino acids in the polypeptide,
Zb, Zu are the contributions to the partition function from
amino acids in the bounded and unbounded states defined
in equations (2) and (3) respectively. Z is the partition
function of the polypeptide defined in equation (1). The
dependence of helicity on temperature obtained using the
statistical approach for alanine polypeptides of different
length are shown in Figure 11.

On the basis of MD simulations, it possible to evaluate
the dependence of helicity on temperature. Helicity can
be defined as the ratio of amino acids being in the α-helix
conformation to the total number of amino acids in the
polypeptide, averaged over the MD trajectory. The amino
acid is considered to be in the conformation of an α-helix
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Fig. 12. (Color online) The root mean square deviation of an-
gles ϕ and ψ calculated with the use of equation (14) for alanine
polypeptide consisting of 21 amino acids. The calculations were
done in respect to the tenth amino acid of the polypeptide for
300 K (top plot) and for 1000 K (bottom plot).

if the angles describing its twisting are within the range
of ϕ ∈ [−72◦;−6◦] and ψ ∈ [0◦;−82◦]. This region was
chosen from the analysis of angles ϕ and ψ distribution
at 300 K. The helicity for alanine polypeptide consisting
of 21 amino acids obtained within the framework of MD
approach is shown in the inset to Figure 11. From this
plot it is seen that at T ≈ 300 K, which is far beyond
the temperature of the phase transition, the helicity of
the Ala21 polypeptide is 0.82. The fact that at low tem-
peratures the helicity of the polypeptide obtained within
the MD approach is smaller than unity arises due to the
difficulty of defining the α-helix state of an amino acid.
Thus, the helicity obtained within the MD approach rolls
off at lower temperatures compared to the helicity of the
polypeptide of the same length obtained using the statis-
tical mechanics approach.

The kink in the helicity curve corresponds to the tem-
perature of the phase transition of the system. As seen
from Figure 11, with an increase of the polypeptide length,
the helicity curve is becomes steeper as the phase transi-
tion is getting sharper. In the limiting case of an infinitely
long polypeptide chain, the helicity should behave like a
step function. This is yet another feature of a first-order
phase transition.

3.4 Correlation of different amino acids
in the polypeptide

An important question concerns the statistical indepen-
dence of amino acids in the polypeptide at different tem-
peratures. In the present section we analyze how a partic-
ular conformation of one amino acids influences the PES
of other amino acids in the polypeptide. In Figure 12 we
present the deviations of angles ϕ and ψ from the twist-
ing angles ϕ10 and ψ10 in the 10th amino acid of alanine
polypeptide. These results were obtained on the basis of

MD simulations of the Ala21 polypeptide at 300 K and
at 1000 K. The deviation of angles ϕ and ψ is defined as
follows:

RMSD(ϕi) =
j<=M∑
j=1

√
1
M

(ϕi − ϕ10)2

RMSD(ψi) =
j<=M∑
j=1

√
1
M

(ψi − ψ10)2, (14)

where i is the amino acid index in the polypeptide and M
is the number of MD simulation steps. Note, that the plots
shown in Figure 12 do not depend on the reference amino
acid (we used the middle amino acid in the polypeptide).

The top plot in Figure 12 was obtained at 300 K. At
this temperature, all amino acids in the polypeptide are
in the α-helix conformation, and the deviation of angles
ϕ and ψ is less than 16◦ for all amino acids except the
boundary ones, where the relative deviation of the angles
ϕ and ψ is 28◦ and 34◦ respectively. This happens because,
while the boundary amino acids are loosely bounded, the
central amino acids in the polypeptide are close to the
minima that corresponds to an α-helix conformation. In
the α-helix state, all central amino acids are stabilized by
two hydrogen bonds, while the boundary amino acids form
only one hydrogen bond.

At 1000 K the polypeptide is, to large extent, found in
the random coil phase and therefore becomes more flex-
ible. In the random coil phase, the stabilizing hydrogen
bonds are broken, and the deviation of angles ϕ and ψ
significantly increases. This fact is clearly seen in the bot-
tom plot of Figure 12. However at 1000 K, the deviation of
angles ϕ and ψ in the central and in the boundary amino
acids is almost the same, confirming the assumption that
in the random coil phase, short alanine polypeptides do
not build hydrogen bonds.

Another important fact which is worth mentioning is
that in the random coil phase (and in the central part of
the α-helix), the deviation of angles ϕ and ψ does not de-
pend on the distance between amino acids in the polypep-
tide chain. For instance, the deviation between angles in
the 10th and in the 11th amino acid is almost the same as
the deviation between angles in the 10th and in the 17th
amino acid. This fact allows one to conclude that in a
certain phase of the polypeptide (α-helix or random coil),
amino acids can be treated as statistically independent.

4 Conclusion

In the present paper, we presented results of calculations
obtained with the statistical method described in our pre-
ceding paper [1]. We have also performed a detail analysis
of the α-helix↔random coil transition in alanine polypep-
tides of different lengths. We have calculated the potential
energy surfaces of polypeptides with respect to their twist-
ing degrees of freedom and constructed a parameter-free
partition function of the polypeptide using our statistical
formalism [1]. From this partition function, we derived and
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analyzed the temperature dependence of the heat capac-
ity, latent heat and helicity of alanine polypeptides con-
sisting of 21, 30, 40, 50 and 100 amino acids. Alternatively,
we have obtained the same thermodynamical characteris-
tics from the use of molecular dynamics simulations and
compared them with the results of our statistical mechan-
ics approach. The comparison proved the validity of our
method and established its accuracy.

It was demonstrated that the heat capacity of alanine
polypeptides has a peak at a certain temperature. The
parameters of this peak (i.e. the maximal value of the
heat capacity, the temperature of the peak, the width at
half maximum, the area of the peak) were analyzed as a
function of polypeptide length. Based on the predictions
of the two energy-level model, it was demonstrated that
the α-helix↔random coil transition in alanine polypeptide
is a first order phase transition.

We have established a correspondence of our method
with the results of the semiempirical approach suggested
by Zimm and Bragg [4]. For this purpose we have de-
termined the key parameters of the Zimm-Bragg semiem-
pirical statistical theory. The calculated parameters of the
Zimm-Bragg theory were compared with the results of ear-
lier calculations from reference [19].

The final part of this paper deals with the statistical
independence of amino acids in the polypeptide at differ-
ent temperatures. It was shown that a particular confor-
mation of one amino acids influences the PES of other
amino acids in the polypeptide. We demonstrated that in
a certain phase, amino acids can be treated as statistically
independent.

In this paper, we demonstrated that the new sta-
tistical approach is applicable for the description of α-
helix↔random coil phase transition in alanine polypep-
tides. However, this method is general and can be used to
study similar processes in other complex molecular sys-
tems. For example, it would be interesting to apply the
suggested formalism to the study of β-sheet↔random coil
phase transition and to the study of non-homogeneous
polypeptides (i.e. consisting of different amino acids). The
suggested method can also be applied to the description
of protein folding — an important question left open for
further consideration. However, to study many of these
problems it is important to extend the formalism further
and to account for the long-range interactions [54], which
might play an important role in complex molecular sys-
tems like proteins, DNA, RNA.

In this work, we have investigated α-helix↔random
coil phase transition of alanine polypeptides in vacuo.
So far there has been done no experimental work on α-
helix↔random coil transition in gas phase. Nevertheless,
it is important that such experiments are possible and
can be performed using of the techniques MALDI [55–58]
and the ESI mass spectroscopy [59,60]. We hope that our
theoretical analysis of the α-helix↔random coil in alanine
polypeptides in vacuo will stimulate experimentalists to
verify our predictions.
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